•   可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

    光通信的光通信

      目前宽带城域网(BMAN)正成为信息化建设的热点,DWDM(密集波分复用)的巨大带宽和传输数据的透明性,无疑是当今光纤应用领域的首选技术。然而,MAN等具有传输距离短、拓扑灵活和接入类型多等特点,如照搬主要用于长途传输的DWDM,必然成本过高;同时早期DWDM对MAN等灵活多样性也难以适应。面对这种低成本城域范围的宽带需求,CWDM(粗波分复用)技术应运而生,并很快成为一种实用性的设备。 对光通信来说,其技术基本成熟,而业务需求相对不足。以被誉为“宽带接入最终目标”的FTTH为例,其实现技术EPON已经完全成熟,但由于普通用户上网需要的带宽不高,使FTTH的商用只限于一些试点地区。但是,在2006年,随着IPTV等三重播放业务开展,运营商提供的带宽已经不能满足用户对高清晰电视的要求,随之FTTH的部署也提上了日程。无独有偶,ASON对传输网络控制灵活,可为企业客户提供个性化服务,不少运营商为发展和维系企业客户,不惜重金投资建设ASON。

      全光网络未来传输网络的最终目标,是构建全光网络,即在接入网、城域网、骨干网完全实现“光纤传输代替铜线传输”。而目前的一切研发进展,都是“逼近”这个目标的过程。 本世纪30年代,有人提出这样的观点:“总有一天光通信会取代有线和微波通信而成为通信主流”。该观点反映出光纤通信技术在未来通信中已显示出其重要性。今天,光通信技术已经很成熟,光纤通信已是各种通信网的主要传输方式,光纤通信在信息高速公路的建设中扮演着至关重要的角色,欧美等发达国家已经把光纤通信放在了国家发展的战略地位。现在光纤的使用已不只限于陆地,光缆已广泛铺设到了大西洋、太平洋海底,这些海底光缆使得全球通信变得非常简单快捷。现在不少发达国家又把光缆铺设到住宅前,实现了光纤到办公室、光纤到家庭。光纤通信技术之所以发展这样迅速,除了人们日益增长的信息传输和交换需要外,主要是由光纤通信本身所具有的优点决定的。

      ――1880年,美国电话发明家贝尔就已经研究并成功地发送与接收了光电线年,贝尔宣读了一篇题为《关于利用光线进行声音的产生与复制》的论文,报导了他的光电线年间,日本在东京的日本电报公司与每日新闻社之间实现了3.6公里的光通信,但在大雾大雨天气里效果很差。第二次世界大战期间,光电话发展成为红外线电话,因为红外线肉眼看不见,更有利于保密。

      ――1854年,英国的廷德尔在英国皇家学会的一次演讲中指出,光线能够沿盛水的弯曲管道进行反射而传输,并用实验证实了这个想法。

      ――1927年,英国的贝尔德首次利用光全反射现象制成石英纤维可解析图像,并且获得了两项专利。

      ――1953年,荷兰人范赫尔把一种折射率为1.47的塑料涂在玻璃纤维上,形成比玻璃纤维芯折射率低的套层,得到了光学绝缘的单根纤维。但由于塑料套层不均匀,光能量损失太大。

      ――1960年7月世界上第一台红宝石激光器出现了。1961年9月由中国科学院长春光学精密机械研究所研制成功中国第一台红宝石激光器。

      ――20世纪60年代,有的实验室用氦——氖气体激光器做了传送电视信号和20路电话的实验。也有的公司制成了语言信道试验性通信系统,最大传输距离为600米。到80年代初激光通信已进入应用发展阶段。

      ――1966年英籍华人高锟博士首次明确提出利用光导纤维进行激光通信的设想,并为此获得了1979年5月由瑞士国王颁发的国际伊利申通信奖金。

      ――1968年,日本两家公司联合宣布研制成了一种新型无套层光纤,它能聚集和成像,称作聚焦纤维。同期,美国宣布制成液体纤维,它是利用石英毛细管充以高透明液构成的。这两种光纤的光耗损很难降低,所以实用价值不大。

      ――1970年美国康宁公司用高纯石英生产出世界上第一根耗损率为每公里20分贝的套层光纤,开创了光纤通信的新篇章,使通信光纤研究跃进了一大步。一根光纤可以传输150万路电线年日本在大孤附近的奈良县开始筹建世界上第一个完全用光缆实现光通信的实验区,到1978年7月已拥有300个用户。(实际上光通信系统使用的不是单根光导纤维,而是由许多光纤维聚集在一起组成的光缆。一根直径为1厘米的光缆,里面有近百根光导纤维。光缆和电缆一样可以架在空中,埋入地下,也可以铺设在海底,它的出现使激光通信进入实际应用阶段。)

      —— 目前世界上很多国家都开始大规模应用光通信技术,传输容量和传输距离都有很大的进步。目前我国也已经大量铺设光纤网络。数据传输速率已达到100Gb/ps。 在70年代国外的低损耗光纤获得突破以后,我国从1974年开始了低损耗光纤和光通信的研究工作,并于70年代中期研制出低损耗光纤和室温下可连续发光的半导体激光器。1979年分别在北京和上海建成了市话光缆通信试验系统,这比世界上第一次现场试验只晚两年多。这些成果成为我国光通信研究的良好开端,并使我国成为当时少有的几个拥有光缆通信系统试验段的几个国家之一。到80年代末,我国的光纤通信的关键技术已达到国际先进水平。

      从1991年起,我国已不再建长途电缆通信系统,而大力发展光纤通信。在“八五”期间,建成了含22条光缆干线公里的“八横八纵”大容量光纤通信干线月,我国第一条最高传输速率的国家一级干线Gb/s密集波分复用(DWDM)系统建成,使一对光纤的通信容量又扩大了8倍。

      目前世界上很多国家都开始大规模应用光通信技术,传输容量和传输距离都有很大的进步。中国市场方面,在互联网接入领域,基础电信企业的互联网用户进一步趋向宽带化。截止2012年,中国互联网宽带用户预计达到1.76亿,年增幅达到17%。移动宽带方面,3G进入规模化发展阶段,预计到2012年底中国3G用户将发展至2.26亿,超过互联网宽带接入用户数量,同时,我国也已经大量铺设光纤网络。数据传输速率已达到100Gb/ps。 对光通信来说,其技术基本成熟,而业务需求相对不足。以被誉为“宽带接入最终目标”的FTTH为例,其实现技术EPON已经完全成熟,但由于普通用户上网需要的带宽不高,使FTTH的商用只限于一些试点地区。但是,在2006年之后,随着IPTV等三重播放业务开展,运营商提供的带宽已经不能满足用户对高清晰电视的要求,随之FTTH的部署也提上了日程。无独有偶,ASON对传输网络控制灵活,可为企业客户提供个性化服务,不少运营商为发展和维系企业客户,不惜重金投资建设ASON 。

      据媒体报道,截至2010年,我国宽带上网平均速率位列全球71位,平均下行速率仅1.8Mbps,仅为全球宽带5.6Mbp s的平均接入速率的1/3,不及美、日等发达国家的1/10,而宽带平均接入费用却是发达国家的3-4倍。

      虽然目前我国的宽带发展状况远落后于发达国家,但数据显示:我国光纤通信技术和产品设备已经处于世界领先水平,拥有世界最大最完整的光通信产业链,我国也成为全球光通信器件市场及产品输出大国。

      光纤通讯系统主要包含光通信设备、光纤光缆和光通信器件三部分,光通信器件则是构建光通信系统与网络的基础,决定着高速光传输设备、长距离光传输设备和智能光网络的发展、升级以及推广应用。

      据《中国光通信器件行业市场前瞻与投资战略规划分析报告前瞻》分析,随着我国光通信行业基础设施建设的加快,光通信器件产业逐渐向中国转移,我国也成为全球重要的生产销售基地。2010年中国生产制造的器件已占全球25%以上市场份额,我国光器件市场规模在全球市场中的份额也从2008年的17%增加到2010年的26%左右,规模达到93亿元人民币,同比增长率30%。 未来传输网络的最终目标,是构建全光网络,即在接入网、城域网、骨干网完全实现“光纤传输代替铜线传输”。而目前的一切研发进展,都是“逼近”这个目标的过程。

      骨干网是对速度、距离和容量要求最高的一部分网络,将ASON技术应用于骨干网,是实现光网络智能化的重要一步,其基本思想是在过去的光传输网络上引入智能控制平面,从而实现对资源的按需分配。DWDM也将在骨干网中一显身手,未来有可能完全取代SDH,从而实现IPOVERDWDM。

      城域网将会成为运营商提供带宽和业务的瓶颈,同时,城域网也将成为最大的市场机遇。目前基于SDH的MSTP技术成熟、兼容性好,特别是采用了RPR、GFP、LCAS和MPLS等新标准之后,已经可以灵活有效地支持各种数据业务。

      对接入网来说,FTTH(光纤到户)是一个长远的理想解决方案。FTTx的演进路线将是逐渐将光纤向用户推近的过程,即从FTTN(光纤到小区)到FTTC(光纤到路边)和FTTB(光纤到公寓小楼)乃至最后到FTTP(光纤到驻地)。当然这将是一个很长的过渡时期,在这个过程中,光纤接入方式还将与ADSL/ADSL2+并存。

      基于上述全光网络构架有很多核心技术,它们将引领光通信的未来发展。下面着重介绍ASON、FTTH、DWM、RPR这四项最重要的技术。

    上一篇:

    下一篇:

    光通讯
    光通讯
    2019-09-27 20:15
    阅读数 2881
    评论数 1
I'm loading
 家电维修|北京赛车pk10